Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy.
نویسندگان
چکیده
Mutations in the androgen receptor (AR) that enable activation by antiandrogens occur in hormone-refractory prostate cancer, suggesting that mutant ARs are selected by treatment. To validate this hypothesis, we compared AR variants in metastases obtained by rapid autopsy of patients treated with flutamide or bicalutamide, or by excision of lymph node metastases from hormone-naïve patients. AR mutations occurred at low levels in all specimens, reflecting genetic heterogeneity of prostate cancer. Base changes recurring in multiple samples or multiple times per sample were considered putative selected mutations. Of 26 recurring missense mutations, most in the NH(2)-terminal domain (NTD) occurred in multiple tumors, whereas those in the ligand binding domain (LBD) were case specific. Hormone-naïve tumors had few recurring mutations and none in the LBD. Several AR variants were assessed for mechanisms that might underlie treatment resistance. Selection was evident for the promiscuous receptor AR-V716M, which dominated three metastases from one flutamide-treated patient. For the inactive cytoplasmically restricted splice variant AR23, coexpression with AR enhanced ligand response, supporting a decoy function. A novel NTD mutation, W435L, in a motif involved in intramolecular interaction influenced promoter-selective, cell-dependent transactivation. AR-E255K, mutated in a domain that interacts with an E3 ubiquitin ligase, led to increased protein stability and nuclear localization in the absence of ligand. Thus, treatment with antiandrogens selects for gain-of-function AR mutations with altered stability, promoter preference, or ligand specificity. These processes reveal multiple targets for effective therapies regardless of AR mutation.
منابع مشابه
Profiling human androgen receptor mutations reveals treatment effects in a mouse model of prostate cancer.
Gain-of-function mutations in the androgen receptor (AR) are found in prostate cancer and are implicated in the failure of hormone therapy. Most studies have emphasized the ligand-binding domain (LBD) where mutations can create promiscuous receptors, but mutations in the NH(2)-terminal transactivation domain have also been found. To assess AR alteration as a mechanism of treatment resistance, a...
متن کاملAndrogen Receptor-Dependent and -Independent Mechanisms Involved in Prostate Cancer Therapy Resistance
Despite the initial efficacy of androgen deprivation in prostate cancer, virtually all patients progress to castration-resistant prostate cancer (CRPC). Androgen receptor (AR) signaling is critically required for CRPC. A new generation of medications targeting AR, such as abiraterone and enzalutamide, has improved survival of metastatic CRPC (mCRPC) patients. However, a significant proportion o...
متن کاملMechanisms of Androgen-Independent Prostate Cancer
Prostate cancer is the second leading cause of cancer-related deaths among men in North America. Almost all prostate cancers begin in an androgen-dependent state, so androgen deprivation therapy is administered and results in improved clinical outcomes. However, over time, some cancerous cells are able to survive and grow during this treatment, resulting in androgen-independent prostate cancer....
متن کاملThe Impact of Point Mutations in the Human Androgen Receptor: Classification of Mutations on the Basis of Transcriptional Activity
Androgen receptor mediated signaling drives prostate cancer cell growth and survival. Mutations within the receptor occur infrequently in prostate cancer prior to hormonal therapy but become prevalent in incurable androgen independent and metastatic tumors. Despite the determining role played by the androgen receptor in all stages of prostate cancer progression, there is a conspicuous dearth of...
متن کاملThe androgen receptor in prostate cancer.
The androgen receptor is a member of the family of nuclear receptors. In its activated form as an androgen receptor ligand complex (the ligand can either be testosterone or 5a-dihydrotestosterone), the androgen receptor is able to regulate a specific expression of target genes. The androgen receptor is expressed at high levels in male reproductive tissues. Mutations in the androgen receptor gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 69 10 شماره
صفحات -
تاریخ انتشار 2009